

### Subsurface coring for CCS applications

#### Shallow subsurface coring with a robotic seafloor drill to aid the understanding of leakage pathways from carbon storage reservoirs.

Oliver Peppe, Michael Wilson, Maxine Akhurst (British Geological Survey)

Anna Lichtschlag (National Oceanography Centre)

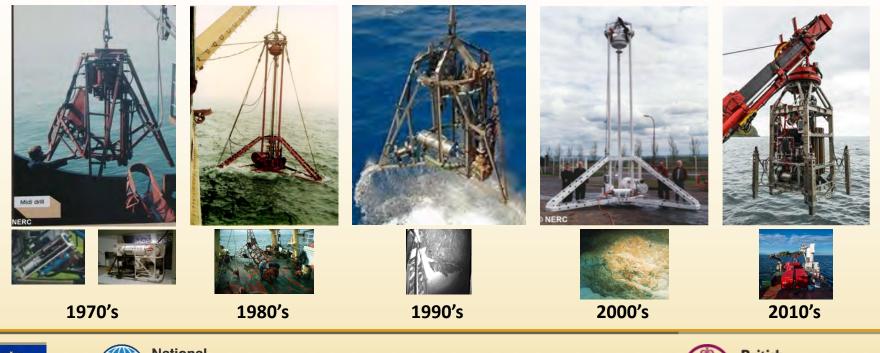






## Summary




- What can the BGS remote seafloor drill (RD2 ) do for the CO2 storage community?
  - Our current capability
  - Coring the Scanner Pockmark for STEMM-CCS
  - Future possibilities?





### 50 years of history











#### RD2 - Key Specifications & Capability

#### **Coring / Drilling Specifications**

- Up to 50 m penetration
- Rotary coring
- Core size 61.1mm
- 1.72m individual core length
- Borehole diameter ~98mm
- Suite of logging tools & scientific sensors

#### **Proven capability**

- Deepest core 41 m
- Longest core 32 m
- Lithologies cored: marine sediments to igneous rocks
- Core recovery up to 104%
- >300m total cored length





#### **Operational Specifications**

- 4000 m operating depth (proven to 3550 m)
- Up to 18° of slope on seabed (proven on 9° slope)
- Capable of landing on soft sediments to hard seabed
- Launch & recovery in up to 5.5m wave height
- Containerised for mobilising on research & supply vessels







# The research question

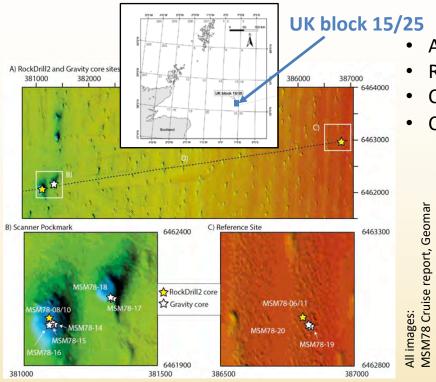
STEMM-CCS

Could a sub-surface chimney structure act as a potential point of release from  $CO_2$  storage reservoirs?

#### Objectives

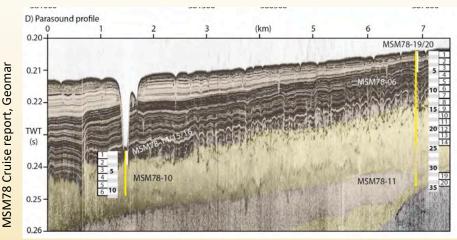
- assess the permeability of a chimney
- collect geochemical and geophysical data to assess the connectivity of the chimney with the subsurface
- assess the pathways and degree of fluids flow through the chimney structure
- ground-truth the geophysical data and to collect data for permeability modelling

#### Part of STEMM-CCS Workpackage 3:


"Characterising the potential  $CO_2$  leakage pathways through the overburden"







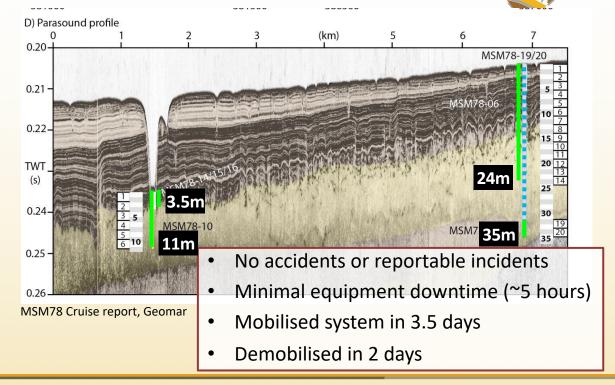

# The target: the Scanner Pockmark





- Active pockmark in UK block 15/25 (Witch ground basin)
- Roughly oval shape 900 m long, 450 m wide and 22 m deep
- Constant seepage of methane
- Carbonates on the seafloor






National Oceanography Centre



# What we achieved for STEMM-CCS

74m drilled
43m cored
4 days
4 sites
55% recovery









# Coring summary



| Sites  | Penetration<br>(mbsf) | Coring runs<br>(m) | Coring<br>Recovery<br>(m) | Average<br>Recovery<br>(%) | Recovery<br>Range<br>(%) |
|--------|-----------------------|--------------------|---------------------------|----------------------------|--------------------------|
| 1      | 24.2                  | 24.2               | 14.7                      | 61                         | 24 - 103                 |
| 2      | 3.5                   | 3.5                | 1.7                       | 42                         | 19 – 66                  |
| 3      | 11.1                  | 11.1               | 6.0                       | 54                         | 3 – 90                   |
| 4      | 35.4                  | 3.4                | 1.0                       | 30                         | 13 – 31                  |
| Totals | 74.8                  | 42.8               | 23.5                      | 55                         | 3 - 103                  |







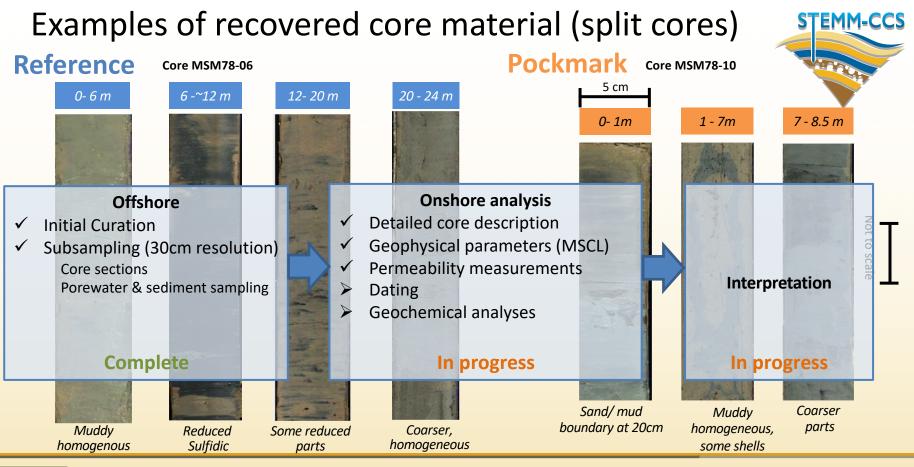











Image: Svelvik Field Lab



## RD2 capability for offshore CO<sub>2</sub> storage

- Proven capability in:
  - Characterising storage site overburden
  - Baseline environmental observation of overburden lithology, sedimentology, stability and pore water chemistry
- Future capability for CO<sub>2</sub> storage site monitoring:
  - Instrumentation of shallow subsurface boreholes offering increased signal to noise & improved sensor coupling





## Conclusions



- RD2 capability and the cores obtained are a vital part of STEMM-CCS work to characterise the overburden, including ground-truthing the geophysical data.
- Seafloor drills could play a valuable role in other aspects of the CCS industry, including in the installation of monitoring equipment.



















