

# Enabling a CO<sub>2</sub> release experiment in the North Sea

#### Kevin Saw

Robin Brown, Liam Carter, Anita Flohr, Amine Gana, David Paxton, John Walk, Mark Wells (Cellula Robotics), Hannah Wright, James Wyatt Ocean Technology and Engineering Group National Oceanography Centre, UK









# 1. Release gas from a point 3 m below the seafloor at 120 m









- 1. Release gas from a point 3 m below the seafloor at 120 m
- No surface disturbance within
  5 m radius











- 1. Release gas from a point 3 m below the seafloor at 120 m
- No surface disturbance within
  5 m radius
- 3. Provide 3 tonnes of CO<sub>2</sub>









- 1. Release gas from a point 3 m below the seafloor at 120 m
- No surface disturbance within
  5 m radius
- 3. Provide 3 tonnes of CO<sub>2</sub>
- 4. Add trace gas mix at precise mass ratio of 10,000:1











- 1. Release gas from a point 3 m below the seafloor at 120 m
- No surface disturbance within
  5 m radius
- 3. Provide 3 tonnes of CO<sub>2</sub>
- 4. Add trace gas mix at precise mass ratio of 10,000:1
- 5. Do not disturb water flow in vicinity of release point











- 1. Release gas from a point 3 m below the seafloor at 120 m
- No surface disturbance within
  5 m radius
- 3. Provide 3 tonnes of CO<sub>2</sub>
- 4. Add trace gas mix at precise mass ratio of 10,000:1
- 5. Do not disturb water flow in vicinity of release point
- 6. Flow rate < 198 grams per min





## The solution...



#### Gas release pipe

![](_page_7_Picture_3.jpeg)

- Pre-curved, rigid pipe inserted from a point ~7 m from release point
- 38.1 mm OD x 12.7 mm ID
- 9 µm diffuser, multiple outlet holes
- Upwardly pointing outlet to minimise chance of gas tracking back up outside of pipe
- Inlet provided with quick-connect fitting for connection by ROV

![](_page_7_Picture_9.jpeg)

![](_page_7_Picture_11.jpeg)

## The solution...

![](_page_8_Picture_1.jpeg)

![](_page_8_Figure_2.jpeg)

### Gas tanks

• 80 m separation to minimise water flow disturbance at release point

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

## Gas release pipe...

![](_page_9_Picture_1.jpeg)

Photo: Ben Roche

![](_page_9_Picture_3.jpeg)

- Pipe insertion rig designed and built by Cellula Robotics in Canada
- Here being deployed from RRS James Cook
- More to follow from Allan Spencer...

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

![](_page_9_Picture_9.jpeg)

## Gas delivery...

![](_page_10_Picture_1.jpeg)

![](_page_10_Picture_2.jpeg)

## Palletised standard gas cylinders

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_6.jpeg)

## Gas delivery...

![](_page_11_Picture_1.jpeg)

#### Palletised standard gas cylinders

 Unwilling to supply for subsea use

> Bespoke gas tank package

![](_page_11_Picture_5.jpeg)

![](_page_11_Picture_6.jpeg)

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

## Gas delivery...

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

- 5.5 x 2.5 x 2.0 m
- Weight in air: 13 tonnes
- Weight in water: 6 tonnes
- CO<sub>2</sub> tank capacity: 5.6 m<sup>3</sup>
  ~ 3 tonnes liquid
  ~ 1.5x10<sup>6</sup> litres gas
- CO<sub>2</sub> tanks uninsulated so pressure dependent on ambient temperature
- Max pressure 80 bar
- 42 bar at seawater temp ~8°C
- Tracer mix: 200 litres (gas) at 30 bar

![](_page_12_Picture_11.jpeg)

![](_page_12_Picture_12.jpeg)

![](_page_12_Picture_13.jpeg)

## Gas control...

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

modems

![](_page_13_Picture_4.jpeg)

MAIN PROCESS

(CONTROLLED)

## Gas control...

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

- Manual ROV panel
- Isolating valves, diverting valves, dump valves
- Final stage pressure regulator
- Pressure gauges

•

Heat transfer coils to mitigate Joule Thomson cooling through pressure regulators

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

## Gas connection...

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

- 3 reels; 2 for connection to buried gas pipe;
  1 for simply extending and laying on seabed should buried pipe fail to produce gas
- Reel picked up by ROV and unwound as ROV moves away
- Ends fitted with quick-release couplings for connection to buried gas pipes

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

![](_page_15_Picture_9.jpeg)

**FEMM-CCS** 

## Gas flow...

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_16_Picture_3.jpeg)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

![](_page_16_Picture_5.jpeg)